181 research outputs found

    Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium.

    Get PDF
    BACKGROUND: The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS: Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS: These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation

    Emergence of Tuning to Natural Stimulus Statistics along the Central Auditory Pathway

    Get PDF
    We have previously shown that neurons in primary auditory cortex (A1) of anaesthetized (ketamine/medetomidine) ferrets respond more strongly and reliably to dynamic stimuli whose statistics follow "natural" 1/f dynamics than to stimuli exhibiting pitch and amplitude modulations that are faster (1/f(0.5)) or slower (1/f(2)) than 1/f. To investigate where along the central auditory pathway this 1/f-modulation tuning arises, we have now characterized responses of neurons in the central nucleus of the inferior colliculus (ICC) and the ventral division of the mediate geniculate nucleus of the thalamus (MGV) to 1/f(gamma) distributed stimuli with gamma varying between 0.5 and 2.8. We found that, while the great majority of neurons recorded from the ICC showed a strong preference for the most rapidly varying (1/f(0.5) distributed) stimuli, responses from MGV neurons did not exhibit marked or systematic preferences for any particular gamma exponent. Only in A1 did a majority of neurons respond with higher firing rates to stimuli in which gamma takes values near 1. These results indicate that 1/f tuning emerges at forebrain levels of the ascending auditory pathway

    Broadened Population-Level Frequency Tuning in Human Auditory Cortex of Portable Music Player Users

    Get PDF
    Nowadays, many people use portable players to enrich their daily life with enjoyable music. However, in noisy environments, the player volume is often set to extremely high levels in order to drown out the intense ambient noise and satisfy the appetite for music. Extensive and inappropriate usage of portable music players might cause subtle damages in the auditory system, which are not behaviorally detectable in an early stage of the hearing impairment progress. Here, by means of magnetoencephalography, we objectively examined detrimental effects of portable music player misusage on the population-level frequency tuning in the human auditory cortex. We compared two groups of young people: one group had listened to music with portable music players intensively for a long period of time, while the other group had not. Both groups performed equally and normally in standard audiological examinations (pure tone audiogram, speech test, and hearing-in-noise test). However, the objective magnetoencephalographic data demonstrated that the population-level frequency tuning in the auditory cortex of the portable music player users was significantly broadened compared to the non-users, when attention was distracted from the auditory modality; this group difference vanished when attention was directed to the auditory modality. Our conclusion is that extensive and inadequate usage of portable music players could cause subtle damages, which standard behavioral audiometric measures fail to detect in an early stage. However, these damages could lead to future irreversible hearing disorders, which would have a huge negative impact on the quality of life of those affected, and the society as a whole

    Superior olivary complex organization and cytoarchitecture may be correlated with function and catarrhine primate phylogeny

    Get PDF
    In the mammalian auditory system, the medial nucleus of the trapezoid body and the lateral superior olive (MNTB-LSO system) contribute to binaural intensity processing and lateralization. Localization precision varies with the sound frequencies. As recency of common ancestry with human beings increases, primates have improved low-frequency sensitivity and reduced sensitivity to higher frequencies. The medial part of the MNTB is devoted to higher frequency processing. Thus, its high-frequency-dependent function is nearly lost in humans and its role in binaural processing as part of the contralateral pathway to the LSO remains questionable. Here, Nissl-stained sections of the superior olivary complex of man (Homo sapiens), bonobo (Pan paniscus), chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), orangutan (Pongo pygmaeus), gibbon (Hylobates lar), and macaque (Macaca fascicularis) were compared to reveal differences and coincidences. From chimpanzees to humans, the size of the LSO decreased, and the MNTB as a compact nucleus nearly disappears. From chimpanzees to humans, the LSO/MNTB ratio increases dramatically too, whereas the LSO/MSO ratio remains 1.1; a finding that probably corresponds to the phylogenetic proximity between the species

    Efficient Temporal Processing of Naturalistic Sounds

    Get PDF
    In this study, we investigate the ability of the mammalian auditory pathway to adapt its strategy for temporal processing under natural stimulus conditions. We derive temporal receptive fields from the responses of neurons in the inferior colliculus to vocalization stimuli with and without additional ambient noise. We find that the onset of ambient noise evokes a change in receptive field dynamics that corresponds to a change from bandpass to lowpass temporal filtering. We show that these changes occur within a few hundred milliseconds of the onset of the noise and are evident across a range of overall stimulus intensities. Using a simple model, we illustrate how these changes in temporal processing exploit differences in the statistical properties of vocalizations and ambient noises to increase the information in the neural response in a manner consistent with the principles of efficient coding

    Beat synchronization across the lifespan: intersection of development and musical experience

    Get PDF
    Rhythmic entrainment, or beat synchronization, provides an opportunity to understand how multiple systems operate together to integrate sensory-motor information. Also, synchronization is an essential component of musical performance that may be enhanced through musical training. Investigations of rhythmic entrainment have revealed a developmental trajectory across the lifespan, showing synchronization improves with age and musical experience. Here, we explore the development and maintenance of synchronization in childhood through older adulthood in a large cohort of participants (N = 145), and also ask how it may be altered by musical experience. We employed a uniform assessment of beat synchronization for all participants and compared performance developmentally and between individuals with and without musical experience. We show that the ability to consistently tap along to a beat improves with age into adulthood, yet in older adulthood tapping performance becomes more variable. Also, from childhood into young adulthood, individuals are able to tap increasingly close to the beat (i.e., asynchronies decline with age), however, this trend reverses from younger into older adulthood. There is a positive association between proportion of life spent playing music and tapping performance, which suggests a link between musical experience and auditory-motor integration. These results are broadly consistent with previous investigations into the development of beat synchronization across the lifespan, and thus complement existing studies and present new insights offered by a different, large cross-sectional sample

    Reliability of Synaptic Transmission at the Synapses of Held In Vivo under Acoustic Stimulation

    Get PDF
    BACKGROUND:The giant synapses of Held play an important role in high-fidelity auditory processing and provide a model system for synaptic transmission at central synapses. Whether transmission of action potentials can fail at these synapses has been investigated in recent studies. At the endbulbs of Held in the anteroventral cochlear nucleus (AVCN) a consistent picture emerged, whereas at the calyx of Held in the medial nucleus of the trapezoid body (MNTB) results on the reliability of transmission remain inconsistent. In vivo this discrepancy could be due to the difficulty in identifying failures of transmission. METHODS/FINDINGS:We introduce a novel method for detecting unreliable transmission in vivo. Based on the temporal relationship between a cells' waveform and other potentials in the recordings, a statistical test is developed that provides a balanced decision between the presence and the absence of failures. Its performance is quantified using simulated voltage recordings and found to exhibit a high level of accuracy. The method was applied to extracellular recordings from the synapses of Held in vivo. At the calyces of Held failures of transmission were found only rarely. By contrast, at the endbulbs of Held in the AVCN failures were found under spontaneous, excited, and suppressed conditions. In accordance with previous studies, failures occurred most abundantly in the suppressed condition, suggesting a role for inhibition. CONCLUSIONS/SIGNIFICANCE:Under the investigated activity conditions/anesthesia, transmission seems to remain largely unimpeded in the MNTB, whereas in the AVCN the occurrence of failures is related to inhibition and could be the basis/result of computational mechanisms for temporal processing. More generally, our approach provides a formal tool for studying the reliability of transmission with high statistical accuracy under typical in vivo recording conditions

    Functional Refinement in the Projection from Ventral Cochlear Nucleus to Lateral Superior Olive Precedes Hearing Onset in Rat

    Get PDF
    Principal neurons of the lateral superior olive (LSO) compute the interaural intensity differences necessary for localizing high-frequency sounds. To perform this computation, the LSO requires precisely tuned, converging excitatory and inhibitory inputs that are driven by the two ears and that are matched for stimulus frequency. In rodents, the inhibitory inputs, which arise from the medial nucleus of the trapezoid body (MNTB), undergo extensive functional refinement during the first postnatal week. Similar functional refinement of the ascending excitatory pathway, which arises in the anteroventral cochlear nucleus (AVCN), has been assumed but has not been well studied. Using whole-cell voltage clamp in acute brainstem slices of neonatal rats, we examined developmental changes in input strength and pre- and post-synaptic properties of the VCN-LSO pathway. A key question was whether functional refinement in one of the two major input pathways might precede and then guide refinement in the opposite pathway. We find that elimination and strengthening of VCN inputs to the LSO occurs over a similar period to that seen for the ascending inhibitory (MNTB-LSO) pathway. During this period, the fractional contribution provided by NMDA receptors (NMDARs) declines while the contribution from AMPA receptors (AMPARs) increases. In the NMDAR-mediated response, GluN2B-containing NMDARs predominate in the first postnatal week and decline sharply thereafter. Finally, the progressive decrease in paired-pulse depression between birth and hearing onset allows these synapses to follow progressively higher frequencies. Our data are consistent with a model in which the excitatory and inhibitory projections to LSO are functionally refined in parallel during the first postnatal week, and they further suggest that GluN2B-containing NMDARs may mediate early refinement in the VCN-LSO pathway

    Synaptic Reorganization in the Adult Rat's Ventral Cochlear Nucleus following Its Total Sensory Deafferentation

    Get PDF
    Ablation of a cochlea causes total sensory deafferentation of the cochlear nucleus in the brainstem, providing a model to investigate nervous degeneration and formation of new synaptic contacts in the adult brain. In a quantitative electron microscopical study on the plasticity of the central auditory system of the Wistar rat, we first determined what fraction of the total number of synaptic contact zones (SCZs) in the anteroventral cochlear nucleus (AVCN) is attributable to primary sensory innervation and how many synapses remain after total unilateral cochlear ablation. Second, we attempted to identify the potential for a deafferentation-dependent synaptogenesis. SCZs were ultrastructurally identified before and after deafferentation in tissue treated for ethanolic phosphotungstic acid (EPTA) staining. This was combined with pre-embedding immunocytochemistry for gephyrin identifying inhibitory SCZs, the growth-associated protein GAP-43, glutamate, and choline acetyltransferase. A stereological analysis of EPTA stained sections revealed 1.11±0.09 (S.E.M.)×109 SCZs per mm3 of AVCN tissue. Within 7 days of deafferentation, this number was down by 46%. Excitatory and inhibitory synapses were differentially affected on the side of deafferentation. Excitatory synapses were quickly reduced and then began to increase in number again, necessarily being complemented from sources other than cochlear neurons, while inhibitory synapses were reduced more slowly and continuously. The result was a transient rise of the relative fraction of inhibitory synapses with a decline below original levels thereafter. Synaptogenesis was inferred by the emergence of morphologically immature SCZs that were consistently associated with GAP-43 immunoreactivity. SCZs of this type were estimated to make up a fraction of close to 30% of the total synaptic population present by ten weeks after sensory deafferentation. In conclusion, there appears to be a substantial potential for network reorganization and synaptogenesis in the auditory brainstem after loss of hearing, even in the adult brain
    corecore